The 5-HT3B subunit confers spontaneous channel opening and altered ligand properties of the 5-HT3 receptor.
نویسندگان
چکیده
Current receptor theory suggests that there is an equilibrium between the inactive (R) and active (R*) conformations of ligand-gated ion channels and G protein-coupled receptors. The actions of ligands in both receptor types could be appropriately explained by this two-state model. Ligands such as agonists and antagonists affect receptor function by stabilizing one or both conformations. The 5-HT3 receptor is a member of the Cys-loop ligand-gated ion channel superfamily participating in synaptic transmission. Here we show that co-expression of the 5-HT3A and 5-HT3B receptor subunits in the human embryonic kidney (HEK) 293 cells results in a receptor that displays a low level of constitutive (or agonist-independent) activity. Furthermore, we also demonstrate that the properties of ligands can be modified by receptor composition. Whereas the 5-hydroxytryptamine (5-HT) analog 5-methoxyindole is a partial agonist at the 5-HT3A receptor, it becomes a "protean agonist" (functioning as an agonist and an inverse agonist at the same receptor) at the 5-HT3AB receptor (after the Greek god Proteus, who was able to change his shape and appearance at will). In addition, the 5-HT analog 5-hydroxyindole is a positive allosteric modulator for the liganded active (AR*) conformation of the 5-HT3A and 5-HT3AB receptors and a negative allosteric modulator for the spontaneously active (R*) conformation of the 5-HT3AB receptor, suggesting that the spontaneously active (R*) and liganded active (AR*) conformations are differentially modulated by 5-hydroxyindole. Thus, the incorporation of the 5-HT3B subunit leads to spontaneous channel opening and altered ligand properties.
منابع مشابه
Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat CNS and peripheral nervous system.
The type 3 serotonin (5-HT3) receptor is the only ligand-gated ion channel receptor for serotonin in vertebrates. Two 5-HT3 receptor subunits have been cloned, subunit A (5-HT3A) and subunit B (5-HT3B). We used in situ hybridization histochemistry and reverse transcriptase-PCR amplification to demonstrate that 5-HT3A subunit transcripts are expressed in central and peripheral neurons. In contra...
متن کاملThe 5-hydroxytryptamine type 3 (5-HT3) receptor reveals a novel determinant of single-channel conductance.
5-HT3 (5-hydroxytryptamine type 3) receptors are cation-selective ion channels of the Cys-loop transmitter-gated ion channel superfamily. Two 5-HT3 receptor subunits, 5-HT3A and 5-HT3B, have been characterized in detail, although additional putative 5-HT3 subunit genes (HTR3C, HTR3D and HTR3E) have recently been reported. 5-HT3 receptors function as homopentameric assemblies of the 5-HT3 subuni...
متن کامل5-HT3 Receptor Brain-Type B-Subunits are Differentially Expressed in Heterologous Systems
Genes for five different 5-HT3 receptor subunits have been identified. Most of the subunits have multiple isoforms, but two isoforms of the B subunits, brain-type 1 (Br1) and brain-type 2 (Br2) are of particular interest as they appear to be abundantly expressed in human brain, where 5-HT3B subunit RNA consists of approximately 75% 5-HT3Br2, 24% 5-HT3Br1, and <1% 5-HT3B. Here we use two-electro...
متن کاملModulation of human 5-hydroxytryptamine type 3AB receptors by volatile anesthetics and n-alcohols.
Functional 5-hydroxytryptamine type 3 (5-HT3) receptors can be formed by 5-HT3A subunits alone or in combination with the 5-HT3B subunit, but only the 5-HT3A receptor has been previously studied with respect to the modulation by volatile anesthetics and n-alcohols. Using two-electrode voltage-clamp, we show for the first time the modulation of heteromeric human (h)5-HT3AB receptors, expressed i...
متن کاملCharacterization of the Novel Human Serotonin Receptor Subunits 5-HT3C, 5-HT3D, and 5-HT3E □S
Within the family of serotonin receptors, the 5-hydroxytryptamine-3 (5-HT3) receptor is the only ligand-gated ion channel. It is composed of five subunits, of which the 5-HT3A and 5-HT3B subunits are best characterized. Several studies, however, have reported on the functional diversity of native 5-HT3 receptors, which cannot solely be explained on the basis of the 5-HT3A and 5-HT3B subunits. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 283 11 شماره
صفحات -
تاریخ انتشار 2008